486 research outputs found

    Microbial genomic taxonomy

    Get PDF
    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups

    Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis

    Get PDF
    A Gram-negative, aerobic bacterium, designated strain R-40503(T), was isolated from mucus of the reef-builder coral Mussismilia hispida, located in the Sao Sebastiao Channel, Sao Paulo, Brazil. Phylogenetic analyses revealed that strain R-40503(T) belongs to the genus Marinomonas. The 16S rRNA gene sequence similarity of R-40503(T) was above 97% with the type strains of Marinomonas vaga, M. basaltis, M. communis and M. pontica, and below 97% with type strains of the other Marinomonas species. Strain R-40503(T) showed less than 35% DNA-DNA hybridization (DDH) with the type strains of the phylogenetically closest Marinomonas species, demonstrating that it should be classified into a novel species. Amplified fragment length polymorphism (AFLP), chemotaxonomic and phenotypic analyses provided further evidence for the proposal of a novel species. Concurrently, a close genomic relationship between M. basaltis and M. communis was observed. The type strains of these two species showed 78% DDH and 63% AFLP pattern similarity. Their phenotypic features were very similar, and their DNA G+C contents were identical (46.3 mol%). Collectively, these data demonstrate unambiguously that Marinomonas basaltis is a later heterotypic synonym of Marinomonas communis. Several phenotypic features can be used to discriminate between Marinomonas species. The novel strain R-40503(T) is clearly distinguishable from its neighbours. For instance, it shows oxidase and urease activity, utilizes L-asparagine and has the fatty acid C(12:1) 3-OH but lacks C(10:0) and C(12:0). The name Marinomonas brasilensis sp. nov. is proposed, with the type strain R-40503(T) (=R-278(T) =LMG 25434(T) =CAIM 1459(T)). The DNA G+C content of strain R-40503(T) is 46.5 mol%

    Социальная ответственность бизнеса: опыт внедрения, характерные черты и особенности

    Get PDF
    Целью написания данной статьи является изучения опыта украинских предприятий (компаний) с наилучшими показателями в сфере социальной политики, выявление и анализ особенностей их реализации для разработки концептуального подхода к формированию модели внедрения принципов социальной ответственности в других компаниях (на предприятиях).Изучен опыт лучших компаний Украины в сфере корпоративной социальной ответственности; выявлены характерные черты и особенности разработки социальной политики в компании. Предложен концептуальный подход к формированию модели внедрения принципов социальной ответственности бизнеса.Вивчений досвід кращих компаній України в сфері соціальної відповідальності; виявлені характерні риси та особливості розробки соціальної політики в компанії. Запропонований концептуальний підхід до формування моделі впровадження принципів соціальної відповідальності бізнесу.The experience of the best Ukrainian companies in the sphere of the corporate social responsibility is studied; the personal traits and features of the development of social policy in a company are exposed. The conceptual approach is proposed to the formation of model of business social responsibility principles introduction

    Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans

    Get PDF
    Marine viruses are key drivers of host diversity, population dynamics and biogeochemical cycling and contribute to the daily flux of billions of tons of organic matter. Despite recent advancements in metagenomics, much of their biodiversity remains uncharacterized. Here we report a data set of 27,346 marine virome contigs that includes 44 complete genomes. These outnumber all currently known phage genomes in marine habitats and include members of previously uncharacterized lineages. We designed a new method for host prediction based on co-occurrence associations that reveals these viruses infect dominant members of the marine microbiome such as Prochlorococcus and Pelagibacter. A negative association between host abundance and the virus-to-host ratio supports the recently proposed Piggyback-the-Winner model of reduced phage lysis at higher host densities. An analysis of the abundance patterns of viruses throughout the oceans revealed how marine viral communities adapt to various seasonal, temperature and photic regimes according to targeted hosts and the diversity of auxiliary metabolic genes.CAPESCNPqFAPERJCiencia sem fronteiras programUniv Fed Rio de Janeiro, IB, BR-21944970 Rio de Janeiro, BrazilRadboud Univ Nijmegen, Radboud Inst Mol Life Sci, CMBI, Med Ctr, NL-6500 HB Nijmegen, NetherlandsUniv Utrecht, Theoret Biol & Bioinformat, NL-3584 CH Utrecht, NetherlandsSan Diego State Univ, Dept Biol, San Diego, CA 92182 USAUniv Fed Sao Paulo UNIFESP, Dept Ciencias Mar, BR-11070100 Baixada Santista, BrazilNIOZ Royal Netherlands Inst Sea Res, Dept Marine Microbiol & Biogeochem, POB 59, NL-1790 AB Den Burg, NetherlandsUniv Utrecht, POB 59, NL-1790 AB Den Burg, NetherlandsUniv Amsterdam, Dept Aquat Microbiol, IBED, NL-1090 GE Amsterdam, NetherlandsUniv Fed Rio de Janeiro, COPPE, SAGE, BR-21941950 Rio de Janeiro, BrazilUniv Fed Sao Paulo UNIFESP, Dept Ciencias Mar, BR-11070100 Baixada Santista, BrazilCAPESCNPqFAPERJCiencia sem fronteiras program: 864.14.004Web of Scienc

    Microbial taxonomy in the post-genomic era: Rebuilding from scratch?

    Get PDF
    Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.National Science Foundation (U.S.) (NSF Grant DEB-1046413)National Science Foundation (U.S.) (NSF Grant CNS-1305112)National Science Foundation (U.S.) (NSF Grant DEB 0918333)National Science Foundation (U.S.) (NSF grant OCE 1441943)Gordon and Betty Moore FoundationUnited States. Dept. of Energy. Office of ScienceUnited States. Dept. of Energy. Office of Biological and Environmental ResearchOak Ridge National LaboratoryCarlos Chagas Filho Foundation for Research Support of the State of Rio de JaneiroBrazil. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (grant)Conselho Nacional de Pesquisas (Brazil

    Biological Oxygen Demand Optode Analysis of Coral Reef-Associated Microbial Communities Exposed to Algal Exudates

    Get PDF
    Algae-derived dissolved organic matter has been hypothesized to induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, biological oxygen demand (BOD) optodes were used to quantify the change in oxygen concentrations of microbial communities following exposure to exudates generated by turf algae and crustose coralline algae (CCA). BOD optodes were embedded with microbial communities cultured from Montastraea annularis and Mussismilia hispida, and respiration was measured during exposure to turf and CCA exudates. The oxygen concentrations along the optodes were visualized with a low-cost Submersible Oxygen Optode Recorder (SOOpR) system. With this system we observed that exposure to exudates derived from turf algae stimulated higher oxygen drawdown by the coral-associated bacteria than CCA exudates or seawater controls. Furthermore, in both turf and CCA exudate treatments, all microbial communities (coral-, algae-associated and pelagic) contributed significantly to the observed oxygen drawdown. This suggests that the driving factor for elevated oxygen consumption rates is the source of exudates rather than the initially introduced microbial community. Our results demonstrate that exudates from turf algae may contribute to hypoxia-induced coral stress in two different coral genera as a result of increased biological oxygen demand of the local microbial community. Additionally, the SOOpR system developed here can be applied to measure the BOD of any culturable microbe or microbial community

    Photobacterium sanctipauli sp nov isolated from bleached Madracis decactis (Scleractinia) in the St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil

    Get PDF
    Five novel strains of Photobacterium (A-394T, A-373, A-379, A-397 and A-398) were isolated from bleached coralMadracis decactis (scleractinian) in the remote St Peter & St Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. Healthy M. decactis specimens were also surveyed, but no strains were related to them. The novel isolates formed a distinct lineage based on the 16S rRNA, recA, and rpoA gene sequences analysis. Their closest phylogenetic neighbours were Photobacterium rosenbergii, P. gaetbulicola, and P. lutimaris, sharing 96.6 to 95.8% 16S rRNA gene sequence similarity. The novel species can be differentiated from the closest neighbours by several phenotypic and chemotaxonomic markers. It grows at pH 11, produces tryptophane deaminase, presents the fatty acid C-18:0, but lacks C-16:0 iso. The whole cell protein profile, based in MALDI-TOF MS, distinguished the strains of the novel species among each other and from the closest neighbors. In addition, we are releasing the whole genome sequence of the type strain. The name Photobacterium sanctipauli sp. nov. is proposed for this taxon. The G + C content of the type strain A-394(T) (=LMG27910(T) = CAIM1892(T)) is 48.2 mol%

    Environmental and sanitary conditions of guanabara bay, Rio de Janeiro

    Get PDF
    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro

    Structuring of Bacterioplankton Diversity in a Large Tropical Bay

    Get PDF
    Structuring of bacterioplanktonic populations and factors that determine the structuring of specific niche partitions have been demonstrated only for a limited number of colder water environments. In order to better understand the physical chemical and biological parameters that may influence bacterioplankton diversity and abundance, we examined their productivity, abundance and diversity in the second largest Brazilian tropical bay (Guanabara Bay, GB), as well as seawater physical chemical and biological parameters of GB. The inner bay location with higher nutrient input favored higher microbial (including vibrio) growth. Metagenomic analysis revealed a predominance of Gammaproteobacteria in this location, while GB locations with lower nutrient concentration favored Alphaproteobacteria and Flavobacteria. According to the subsystems (SEED) functional analysis, GB has a distinctive metabolic signature, comprising a higher number of sequences in the metabolism of phosphorus and aromatic compounds and a lower number of sequences in the photosynthesis subsystem. The apparent phosphorus limitation appears to influence the GB metagenomic signature of the three locations. Phosphorus is also one of the main factors determining changes in the abundance of planktonic vibrios, suggesting that nutrient limitation can be observed at community (metagenomic) and population levels (total prokaryote and vibrio counts)
    corecore